Anonymizing and Obfuscating PDF Content while Preserving
Document Structure
Charlotte Curtis

ccurtis@mtroyal.ca
Mount Royal University
Calgary, Alberta, Canada

ABSTRACT

The portable document format (PDF) is both versatile and com-
plex, with a specification exceeding well over a thousand pages. For
independent developers writing software that reads, displays, or
transforms PDFs, it is difficult to comprehensively account for all of
the potential variations that might exist in the wild. Compounding
this problem are the usage agreements that often accompany pur-
chased and proprietary PDFs, preventing end users from uploading
a troublesome document as part of a bug report and limiting the set
of test cases that can be made public for open source development.

In this paper, pdf-mangler is presented as a solution to this prob-
lem. The goal of pdf-mangler is to remove information in the form
of text, images, and vector graphics while retaining as much of the
document structure and general visual appearance as possible. The
intention is for pdf-mangler to be deployed as part of an automated
bug reporting tool for PDF software.

CCS CONCEPTS

« Information systems — Document structure; « Security and
privacy — Data anonymization and sanitization; - Software
and its engineering — Software testing and debugging.

KEYWORDS

PDF, document transformation, privacy

ACM Reference Format:

Charlotte Curtis. 2022. Anonymizing and Obfuscating PDF Content while
Preserving Document Structure. In DocEng ’22: Proceedings of the 22nd
ACM Symposium on Document Engineering. ACM, New York, NY, USA, 4
pages. https://doi.org/10.1145/3558100.3563849

1 INTRODUCTION

PDFs are a commonly used file format for information exchange,
preserving both the author’s content and visual appearance across
operating systems and software packages. PDFs are often treated as
a “digital paper” end product and can be produced by many different
publishing tools. As the PDF specification allows for many different
ways of producing an equivalent visual result, there are at least as
many different potential document structures as there are authoring
tools. Additionally, many PDFs are treated as digital commercial

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

DocEng 22, September 20-23, 2022, Virtual Event, CA, USA

© 2022 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-9544-1/22/09...$15.00

https://doi.org/10.1145/3558100.3563849

goods that are purchased and subject to usage agreements such as
non-transferability.

For developers writing software to read and interpret PDFs, an
unexpected document structure can cause the program to malfunc-
tion. However, if such a document is confidential, the software
developer cannot readily reproduce the bug encountered by the
end user, posing a challenge for debugging. This is particularly an
issue in the open source domain, where it is beneficial to the project
to have a common set of test cases spanning a range of document
structures.

This paper presents pdf-mangler!, an open-source Python li-
brary designed to anonymize and obfuscate PDFs while preserving
document structure. The purpose of this tool is to enable end users
to submit reproducible bug reports to software developers while
respecting the usage agreements of confidential documents.

2 BACKGROUND
2.1 Related Work

Anonymization and permutation of documents arises in several do-
mains, including medical record sanitization, redaction of financial
documents, anonymization for peer review, and more. However,
the PDF format is either briefly mentioned as the original source,
with contents converted to text [7], or the focus is on detecting
malicious obfuscation [10] and similar security concerns [6].

A number of software packages, including Adobe’s own Acrobat,
can be used to manually redact sensitive information, but this is
not an automated process. To address this, automated tools such
as the open-source pdf-anonymizer [11] have been published to
replace or redact personal identifying information. Similar tools
include pdfparanoia [5], the Metadata Anonymation Toolkit [13],
and anonympy [2].

The goals of existing anonymization tools differ from those of
pdf-mangler, as existing tools aim to preserve the visual appearance
without regard for document structure. Additionally, as the focus
is typically on redacting sensitive personal information, vector
graphics are ignored.

To the best of the author’s knowledge, there is no existing tool
to remove content from a PDF while retaining structure for the
purposes of debugging PDF-handling software.

2.2 PDF Structure

PDFs are a flexible file format that can be structured in many differ-
ent ways. The fundamental building block of a PDF is the dictionary
object, a set of key/value pairs that tie together a group of associated
data, while streams are sequences of bytes that may be interpreted

! Available at https://github.com/cfeurtis/pdf-mangler

https://orcid.org/0000-0003-0079-7040
https://github.com/cfcurtis/pdf-mangler

DocEng ’22, September 20-23, 2022, San Jose, CA, USA

Document Root

S —)

i Outines, 0CGs, |

Metadata i Article beads, etc |

Page Tree

S —

Resources Content stream Annotations

Images : i Form XObjects ! H Fonts

.

i Contentstream,
Resources

Figure 1: A subset of potential objects described by a PDF,
with optional entries outlined in dashed lines.

in a number of different ways [12]. PDF objects may be labelled as
indirect, giving the object a unique identifier and allowing other
objects to reference it in a non-linear fashion.

All PDFs have a document Catalog at the root of the document
body. This dictionary contains a requisite Pages key, which in turn
references one or more children consisting of either individual
pages or other page trees. Each page is described by the Content
stream, which may reference optional Resources such as fonts,
images, or eternal objects (XObjects). Form XObjects are drawn on
the page where specified and are similar to pages in structure, and
may reference their own set of resources, including other XObjects.
Page objects may also include annotations, metadata, thumbnail
images, and more.

In addition to the Pages entry, the document root may con-
tain Outlines allowing for rapid navigation within the document,
OCProperties describing the optional content groups within the
document, document-level metadata, JavaScript actions, and more.
Figure 1 depicts the general hierarchy of some of the objects within
a PDF, but this is by no means comprehensive [12].

The content stream for a page or XObject contains a series of
commands that draw glyphs, vector graphics, or images on the page.
These commands, consisting of operator/operand pairs, either cause
content to be displayed, such as path-painting or text-showing, or
cause the graphics state to be modified, such as changing the line
thickness or font.

As an example, consider the sample-sigconf.pdf document
provided as part of the ACM KTEX template. Figure 2 shows the first
page from this document containing text, image, and vector graphic
elements. Depending on the PDF generation software and decisions
made by the authors, there are different ways of producing the
same visual effect. For example, the image of the baseball diamond
could be an image XObject referenced in the page Resources entry,
or the image data could be contained in the content stream itself as
an inline image. Instead, the image is actually drawn on the page
as a form XObject, which in turn references the image data in the
form’s Resources entry. If a software package expects all images

Charlotte Curtis

The Name of the Title Is Hope

ABSTRACT

CCS CONCEPTS

Figure 2: The first page from the sample ACM SIG Conference
ATEX template.

to be referenced from page resources directly, then this document
would result in unexpected behaviour for an end user. While this
is a simple example, it is just one of many ways that PDF-aware
applications need to consider all the different possible document
structures, something that is difficult to accomplish when the only
representative samples may be confidential.

3 METHODS

To preserve the document structure while removing the content,
a Python library named pdf-mangler was written using PikePDF
[4] to read and parse content streams. A configuration file is used
to define the mangling operations of interest; in this section, the
default options are described. The term “mangle” was chosen to
describe anonymization and obfuscation for its use in the context
of rendering text unrecognizable, as well as for its adoption in the
Python language specification.

After loading the document of interest and configuration file,
pdf-mangler performs the following operations:

(1) Document-level data is anonymized and obfuscated, includ-
ing metadata, outlines, and OCGs.

(2) Indirect objects are examined. Images and JavaScript are
replaced while fonts are parsed.

(3) Page elements such as thumbnails and annotations are re-
moved or mangled.

(4) Content streams of pages and form XObjects are parsed and
rewritten with text and vector elements mangled.

(5) The resulting PDF is saved with a uniquely generated name
based on the original document contents.

Rather than describe each of these steps in detail, the following
sections discuss how different types of data are treated.

https://www.acm.org/publications/authors/submissions
https://github.com/pikepdf/pikepdf

Anonymizing and Obfuscating PDF Content while Preserving Document Structure

3.1 Text

Text is contained in many human- and machine-readable parts of
a PDF, including content streams, document outline, OCG names,
annotations, and more. The goal of text mangling is to remove the
semantic meaning while retaining the approximate visual appear-
ance of the original text. To accomplish this, pdf-mangler defines a
set of character replacement rules rather than replacing at complete
random.

pdf-mangler begins by parsing the fonts defined in a PDF to deter-
mine and categorize supported characters. If a subset of characters
is defined by a CharSet entry, the named characters are mapped
to unicode values using the Adobe glyph list [1]. If the CharSet
entry is not present, the unicode characters are defined using the
font’s FirstChar and LastChar entries. Next, the unicode values
are categorized using the build-in Python unicodedata module,
resulting in a dictionary of key/value pairs with categories as keys
and supported characters as values. If the font does not have defined
first/last char values, it is assumed to be one of the standard 14 type
1 fonts and a default Latin-1 character set is defined [12].

Inspired by the rules defined in pdf-anonymizer[11], pdf-mangler
allows punctuation characters to pass unmodified. Upper- and
lower-case characters and numbers are replaced by a random selec-
tion of a supported character from the same category in the active
font. If the original character is in the standard Latin alphabet,
the replacement character is drawn from that set to avoid over-
representation of non-Latin characters. This is a rather English-
centric approach; a better solution would be to define the “standard”
alphabet based on the dominant language of the document.

As fonts may change on a given page, the active font is tracked
while parsing the content stream to ensure replacement charac-
ters can be displayed. As an example, the title of the sample doc-
ument shown in figure 2 has a font with a CharSet entry de-
finedas"/H/I/N/T/a/e/f/h/i/1/m/o/p/s/t". Replacement char-
acters must be drawn from this set for the mangled result to cor-
rectly render glyphs.

3.2 Images

Images can be displayed in PDFs either as inline image data or, more
commonly, as referenced external stream objects with associated
image encoding information. To manipulate the image, the object
is first converted to a Python Imaging Library (PIL) image [8]. This
image is then converted to RGB mode, filtered using a large radius
Gaussian blur (defaulting to 1/8th the smallest image dimension),
then converted back to the original image mode. The resulting bytes
are written back to the PDF object using the filter(s) specified by
the stream dictionary.

If this process is unsuccessful due to an unknown image format
or similar problem, a new image of the same dimensions with a
uniform greyscale value is instead created and written using the
original mode and filter parameters. Finally, if that is unsuccessful, a
greyscale RGB image is written to the object with the FlateDecode
filter.

3.3 Vector Graphics

Vector graphics are a source of considerable information, particu-
larly for technical drawings and other diagrams. To mangle vector

DocEng ’22, September 20-23, 2022, San Jose, CA, USA

graphics elements, the content stream is parsed to keep track of the
“current point” and modify the operands of any path construction
operators. Path construction operators 1, ¢, v, y append a new
point as either a straight or curved segment, while m begins a new
path and re draws a complete rectangle.

Paths are modified by randomly perturbing the start and end
points of a segment by up to 20% of its original length or 18 points
(1/4" in PDF units), whichever is greater. Curved segment control
points are not modified.

To avoid complete visual chaos, lines or rectangles that are or-
thogonal to and spanning most of a page are not modified. Such
items are likely borders or gridlines and do not convey proprietary
information. Similarly, clipping paths are not modified by default.

3.4 Other PDF Elements

Document-level metadata is treated somewhat differently, as some
of the information, such as author name, is private, while others
such as PDF creator tool can provide valuable debugging informa-
tion. For this reason, a subset of metadata of interest for developers
is retained, while all others is deleted. Page thumbnails are also
deleted, and binary streams found in the PieceInfo entry of a page
are overwritten with empty bytes, as these fields may be populated
with arbitrary data by a given production tool.

JavaScript objects pose a challenge, as they can contain a complex
set of commands. JavaScript entries are overwritten with a simple
pop-up to inform the developer that a JavaScript object exists. Sim-
ilarly, action items that open a URL are overwritten with mangled
text, while regular text annotations are treated like document text.

Finally, to generate a name for the mangled PDF, the ID field in
the trailer is read and hashed, ensuring a unique name for a given
document. If the ID field is not present, the raw bytes of the page
contents are hashed instead.

4 RESULTS

Figure 3 shows the sample page from figure 2 after processing with
pdf-mangler. The text is now unintelligible, but rendered with valid
glyphs in the appropriate font. Some overlap in glyphs is apparent,
particularly where the IKIEX command is typeset.

The image on the page is replaced by a significantly blurred
version, while the two horizontal vector lines separating footnote
and copyright statement are skewed. In this particular example
these vectors do not convey information and it would be appropriate
to exclude vector mangling via a custom configuration file.

By contrast, figure 4 shows the before and after mangling results
of a primarily vector document. While the vertical line running the
length of the page and the rectangle defining the page boundary are
preserved, the remaining vector elements are perturbed in such a
way that the drawing loses its meaning. Additionally, text elements
are randomly replaced, as with the example of figure 3.

5 LIMITATIONS AND FUTURE DIRECTIONS

The primary limitation of pdf-mangler stems from the very prob-
lem it is designed to address: there are so many different features
of PDFs that pdf-mangler is surely not mangling all the potential
components that could contain identifying or proprietary infor-
mation. Furthermore, while pdf-mangler attempts to preserve the

DocEng ’22, September 20-23, 2022, San Jose, CA, USA

Nmp Teho ah haf Isiaf le Tsph

Msp Ttopmky
KEW. Efinsv
th

Skigxw Heob
Nnehejqj Etbatuzgno.
Quewgd, Ol b Mehadqo K, Tpoohge Zix, Otups

Eyuq HhbIf Qmfdml V. Kxzgwap
r Pic avrqd

Kifba 0: Kyosthx U

RCB XEHTTBXK
- Cpxbhirg hypheoa iyvalygdakki— Nkibeeww xyfryws D¢ 7 BLUMYTGAGMMX.
1

ey P, shepi qwb nrw ppibiv 00O plicwsuf

Figure 3: The first page from the sample ACM SIG Conference
IATEX template after mangling.

y % H g { 7 : \Y
! <
I
. -
"\ [—

Figure 4: A page from a technical drawing file before (left)
and after (right) mangling.

document structure, there is an inherent modification introduced
by reading and re-writing the document; it is possible that the orig-
inal document could trigger a bug that is not replicated with the
mangled version. This is particularly likely for documents relying
on JavaScript, which is currently obliterated by pdf-mangler. Addi-
tional issues may be encountered with unexpected image formats,
embedded videos, and errors relying on precise text dimensions.

To address these limitations, future work on pdf-mangler will in-
clude consideration of character dimensions when replacing glyphs
and improved parsing of embedded multimedia and JavaScript con-
tent.

Several decisions that were made in developing pdf-mangler may
not be appropriate for all documents. In particular, perturbation
of vector graphics poses a challenge, and future iterations may

Charlotte Curtis

refine this process to skew graphics in a more controlled manner.
In some cases, technical drawings are formed of many small vector
elements instead of larger continuous lines; in these cases, the
mangling approach taken here may fail to sufficiently obscure the
original intent of the drawing.

Finally, pdf-mangler was developed without consultation from
a copyright expert. Such consultation would be beneficial prior
to deployment to determine whether mangling of contents and
transmitting the modified result for the purposes of debugging
software is considered fair use.

To date, pdf-mangler has been developed and tested on the au-
thor’s personal document collection, as well as a number of publicly
available files [3]. In the future, pdf-mangler will be deployed as
part of an automatic bug submission tool for PDFStitcher, an open-
source tool for manipulating PDF sewing patterns [9]. Ultimately,
pdf-mangler will enable developers of PDFStitcher and similar util-
ities to replicate end user bugs without transmitting files subject to
copyright agreements.

6 CONCLUSION

Working with PDFs is a challenging prospect for developers, espe-
cially for maintainers of open source projects with limited resources.
A particular challenge emerges when an end user encounters an
issue but cannot rightfully share the affected document due to us-
age rights agreements. By replacing text with random characters,
blurring images, and permuting control points of vector graphics,
pdf-mangler is presented as a solution for producing a copy of a
proprietary document that can be used to debug the issue without
sharing sensitive information.

REFERENCES

[1] [SW] Adobe, Adobe Glyph List Specification Aug. 21, 2019. Adobe Type Tools.
URL: https://github.com/adobe- type-tools/agl-specificationRetrieved June 23,
2022 from.

[2] [SW], Anonympy Aug. 7, 2022. ArtLabs. URL: https://github.com/ArtLabss/op
en-data-anonymizerRetrieved Aug. 9, 2022 from.

[3] PDF Association. 2022. Pdf-association/pdf-corpora: An index of PDF-centric
corpora. (June 13, 2022). Retrieved June 24, 2022 from https://github.com/pdf-
association/pdf-corpora.

[4] [SW] James Barlow, PikePDF version 5.1.2, Apr. 17, 2022. URL: https://pikepdf
.readthedocs.io/en/latest/.

[5] [SW] Bryan Bishop, Pdfparanoia 2020. URrL: https://github.com/kanzure/pdfpa
ranoiaRetrieved Aug. 9, 2022 from.

[6] Aniello Castiglione, Alfredo De Santis, and Claudio Soriente. 2010. Security
and privacy issues in the Portable Document Format. Journal of Systems and
Software, 83, 10, (Oct. 1, 2010), 1813-1822. pOI: 10.1016/j.j55.2010.04.062.

[7] Rosario Catelli, Francesco Gargiulo, Valentina Casola, Giuseppe De Pietro,
Hamido Fujita, and Massimo Esposito. 2021. A Novel COVID-19 Data Set and an
Effective Deep Learning Approach for the De-Identification of Italian Medical
Records. IEEE Access, 9, 19097-19110. por1: 10.1109/ACCESS.2021.3054479.

[8] [SW] Alex Clark, Pillow version 9.1.1, May 17, 2022. uRL: https://pillow.readth
edocs.io/en/stable/index.htmlRetrieved June 23, 2022 from.

[9] [SW] Charlotte Curtis, PDFStitcher version 0.6.2, May 11, 2022. URL: https://w
ww.pdfstitcher.org/.

[10] Xun Lu, Jianwei Zhuge, Ruoyu Wang, Yinzhi Cao, and Yan Chen. 2013. De-
obfuscation and Detection of Malicious PDF Files with High Accuracy. In 2013
46th Hawaii International Conference on System Sciences. 2013 46th Hawaii
International Conference on System Sciences. (Jan. 2013), 4890-4899. DoI:
10.1109/HICSS.2013.166.

[11] [SW] Andrew Naoum, Pdf-Anonymizer Oct. 15, 2019. URL: https://github.com
/sypht-team/pdf-anonymizer.

[12] 2019. PDF, Version 1.7 (ISO 32000-1:2008). (Mar. 1, 2019). Retrieved June 20, 2022
from https://www.loc.gov/preservation/digital/formats/fdd/fdd000277.shtml.

[13] Julien Voisin, Christophe Guyeux, and Jacques M. Bahi. 2013. The Metadata
Anonymization Toolkit. (May 26, 2013). arXiv: 1212.3648 [cs]. por: 10.48550/a
rXiv.1212.3648.

https://github.com/adobe-type-tools/agl-specification
https://github.com/ArtLabss/open-data-anonymizer
https://github.com/ArtLabss/open-data-anonymizer
https://github.com/pdf-association/pdf-corpora
https://github.com/pdf-association/pdf-corpora
https://pikepdf.readthedocs.io/en/latest/
https://pikepdf.readthedocs.io/en/latest/
https://github.com/kanzure/pdfparanoia
https://github.com/kanzure/pdfparanoia
https://doi.org/10.1016/j.jss.2010.04.062
https://doi.org/10.1109/ACCESS.2021.3054479
https://pillow.readthedocs.io/en/stable/index.html
https://pillow.readthedocs.io/en/stable/index.html
https://www.pdfstitcher.org/
https://www.pdfstitcher.org/
https://doi.org/10.1109/HICSS.2013.166
https://github.com/sypht-team/pdf-anonymizer
https://github.com/sypht-team/pdf-anonymizer
https://www.loc.gov/preservation/digital/formats/fdd/fdd000277.shtml
https://arxiv.org/abs/1212.3648
https://doi.org/10.48550/arXiv.1212.3648
https://doi.org/10.48550/arXiv.1212.3648

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 PDF Structure

	3 Methods
	3.1 Text
	3.2 Images
	3.3 Vector Graphics
	3.4 Other PDF Elements

	4 Results
	5 Limitations and Future Directions
	6 Conclusion

